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=PFL Regime forceé géneral
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=PFL Solution générale - Laplace
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Transformée de Laplace du mouvement
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=PFL Solution générale - Laplace
) L LS
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T'ransformée inverse de Laplace du mouvement
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Calcul de la réponse x, (1) par le théoréme de
composition — intégrale de convolution

(solution du régime forcé) T t
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=PFL Solution générale - surcritique
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=PFL Solution générale - critique

Fonction de transfert et réponse temporelle en
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=PFL Solution générale - sous-critique

Fonction de transfert en cas d’amortissement \ s
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=PFL Solution de I'impulsion de Dirac

Définition de 'impulsion de Dirac (force Transformée de Laplace de la réponse (sous
impulsionnelle F) / conditions initiales nulles)
Fe<1) (>0, F ) [Fe]=1Ns (; (5) = D(s) = Y(5)(E(s) = Y(S)é KLS)@
§ /(1)

r—
/ eponse de I’ oscillateur soumis a xne impulsion
/ % de Dirac : réponse impufsionnelle
z _Sdlr) = y(1)) (6.14)

Analyse dimensionnelle des grandeurs

Transformée de Laplace de I’'tmpulsion de Dirac [d(1)] =

m | v(#)] = s/kg
[FA(S)J-—- L(f(1)) =_D D(s)|=ms [Y(s)] = N/m = s*/kg
N

“ EF(S): = Ns | [s] = [wo] = Vs
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=PrL Solution de I'impulsion de Dirac

Réponse impulsionnelle en cas d’ amortissement

Réponse impulsionnelle en cas d’amortissement e
sous-critique (1 < 1)

surcritique (1 > 1)

— At — At
&)- d(t) = © (ewlf - e-w11) w9 = L(l”) = o sin a)/ (6.17)
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Réponse impulsionnelle en cas d’amortissement
critique (1 = 1)

() L(r) " ; -wo'/ (6.16)
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=PFL Solution de I'échelon de force
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Définition de I’échelon de force

f() =0 pourt <O
f() =1

pour t = 0

Transformée de Laplace de 1’ échelon de force

@m = L(f(1)) @

Transformée de Laplace de la réponse indicielle
(sous conditions 1nitiales nulles)

1
X(s) = E(s) _@- F(s) _@)Y\@B (6.20)

Réponse indicielle en cas d’ amortissement
surcritique (1N > 1)

1 _
W e(n) = (1= e (chaoy + L shwp))  (622)
(W
Réponse indicielle en cas d’amortissement
critique (N = 1)
- e(t) = %(1 - (1+ wgr)e™™)  (6.25)
Réponse indicielle en cas d’amortissement sous-
critique (1 < 1)
Xt&)‘e(t) — l(l _ e—ﬂt (COS a)lt -+ i_ Sin wlt)) (627)
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=PrL Solution de I’échelon de force
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Relation entre les réponses impulsionnelle et
indicielle

= D(s) = Y(s)-1 ) E(s)=Y(s)! 2
S

= D(s)=sE(s). (631])

L(e(t))=sE(s) (e(0)=0) (6.32)

= D(s) = L(e(r)) (6.33)

= (d(t) = e(t) (6.34)



=PFL Relation entre les réponses d et e

D(s) = Y(s)-1  E(s) = ¥Y(s) L
S
= D(s)=sE(s) (6.31])
L(e(t))=sE(s) (e(0)=0) (6.32)

= D(s) = L(e(r)) (6.33)
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